

COURSE OUTLINE

1. Study programme information

1.1 Higher education institution	Universitatea de Vest din Timișoara
1.2 Faculty / Department	Chimie, Biologie, Geografie / Departamentul de Geografie
1.3 Sub-department	Geografie
1.4 Field of study	Geography
1.5 Level of study	Master's degree
1.6 Study programme / Qualification	Geographic Information Systems

2. Course information

2.1 Course title		Introduction to databases						
2.2 Course conven	or/ Lec	turer	Marius-Florin Pâslaru					
2.3 Teaching assist	ant		Marius-Florin Pâslaru					
2.4 Year of study	I	2.5 Semester	1 2.6 Type of assessment E 2.7 Course type DS/I		DS/DO			
								В

3. Total estimated time (hours of didactic activities per semester)

3.1 Number of hours per week	3	of which: 3.2 lecture	1	3.3 seminar/laboratory	2
3.4 Total hours in the curriculum	42	of which: 3.5 lecture	14	3.6 seminar/laboratory	28
Time distribution:					
Studying textbooks, course materials, bibliography and notes					35
Further research in libraries, on electronic platforms and in the field					35
Preparing seminars/ laboratories, homework, research papers, portfolios and essays					20
Tutoring					9
Examinations					9
Other activities					

3.7 Total hours of individual study	108
3.8 Total hours per semester	150
3.9 Number of credits	6

4. Prerequisites (if applicable)

4.1 based on curriculum	Programming Languages
4.2 based on competencies	Proficiency in English, Analytical mindset, Ability to decompose
	complex problems into sub-problems

5. Conditions (if applicable)

5.1 for the course	Room equipped with beamer and whiteboard
5.2 for the seminar/laboratory	• Room equipped with computers running PostgreSQL Developer tool and
	available connectivity to a PostgreSQL Database server including PostGIS

Website: www.uvt.ro

6. Objectives of the discipline - expected learning outcomes to the formation of which contribute to the completion and promotion of the discipline

the completion	and promotion of the discipline
	• Good understanding of relational database approach;
	• Good knowledge of techniques and methodologies specific to relational database design
	Basic understanding of Spatial database systems
Knowledges	Basic understanding of Spatial datastores.
	• Knowledge in relational database design and efficient implementation
	 Argue about advantages and shortcomings of different model used in modern database management systems
	Ability to approach a problem using a relational database approach
	• Ability to manage relational data (query, insert, update, delete) using SQL language
	• Ability to handle security issues for relational database management systems (users, roles,
Skills	permissions)
SKIIIS	• Ability to analyse, design and implement simple and moderate complexity use cases using computer-based models (database approach)
	• Ability to express high-level, human specific questions into machine-specific languages
	• Use SQL language to represent end-users queries against relational databases
	• Development of a critical and analytical spirit among students; appreciating the advantages
	of using algorithmic thinking
	• The ability to solve specific tasks autonomously
Responsibility	• The application of effective and responsible work strategies, based on the principles, norms
and autonomy	and values of the code of professional ethics
	• Application of effective work techniques in a multidisciplinary team, ethical attitude, respect
	for diversity and multiculturalism, acceptance of diversity of opinion
	• Self-assessment of the need for continuous professional training for the purpose of insertion and adaptability to the requirements of the labor market

7. Content

7.1 Lecture	Teaching methods	Observations
C1. Basic concepts of database approach.	Lecture, Interactive	Lecture notes:
Roles. Components of database system	presentations,	Thomas Connolly and Carolyn Begg,
(1h)	heuristic	Database Systems - A Practical Approach to
	conversation,	Design, Implementation, and Management
	problematization	(4th edition)
		- Chapter 1
C2. The database environment (1h)		Lecture notes :
		Thomas Connolly and Carolyn Begg,
		Database Systems - A Practical Approach to
		Design, Implementation, and Management
		(4th edition)
		- Chapter 2
C3. Conceptual, logical and		Lecture notes:
physical design of databases (1h)		Thomas Connolly and Carolyn Begg,
		Database Systems – A Practical Approach to
		Design, Implementation, and Management
		(4th edition)
		- Chapter 11/12
C4. The relational model. Basic		Lecture notes:
concepts. Relational integrity (1h)		Thomas Connolly and Carolyn Begg,
		Database Systems - A Practical Approach to

Website: www.uvt.ro

Universitatea de Vest din Timișoara

C5. The relational model. Relational algebra. Codd rules. SQL as an implementation of relational model (1h)

C6. Normalization process. Functional dependencies. Normal forms 1NF, 2NF, 3NF (1h)

C7. Normalization process. Normal forms BCNF, 4NF and 5NF. Multi- valued dependencies (1h)

C8. Indexes. Role. Utilization. Implementation (1h)

C9. Concurrency in relational database systems. Anomalies. Transactions. Isolation levels. (1h)

C10. Triggers and views (1h)

C11. A practical use-case to illustrate the database modelling process (1h)

C12. Introduction to Spatial Database. Spatial Data Types. Spatial Reference System. (1h)

C13. Geometry functions (1h)

Design, Implementation, and Management (4th edition)

- Chapter 3

Lecture notes:

Thomas Connolly and Carolyn Begg, Database Systems - A Practical Approach Design, Implementation, and Management (4th edition)

- Chapter 4

Lecture notes:

Thomas Connolly and Carolyn Begg, Database Systems - A Practical Approach to Design, Implementation, and Management (4th edition)

- Chapter 13

Lecture notes:

Thomas Connolly and Carolyn Begg, Database Systems - A Practical Approach to Design, Implementation, and Management (4th edition)

- Chapter 14

Lecture notes:

Thomas Connolly and Carolyn Begg, Database Systems - A Practical Approach Design, Implementation, and Management (4th edition)

- Chapter 17, Annex C5

Lecture notes:

Thomas Connolly and Carolyn Begg, Database

Systems - A Practical Approach to Design, Implementation, and Management (4th edition

Chapter 6.5 and 20

Lecture notes:

Thomas Connolly and Carolyn Begg, Database Systems - A Practical Approach to Design, Implementation, and Management (4th edition)

- Chapter 8.2.7, 6.4, 3.4

Lecture notes:

Thomas Connolly and Carolyn Begg, Database Systems - A Practical Approach to Design, Implementation, and Management (4th edition)

- Chapters 15, 16, 17

Lecture notes: PostGIS tutorial 1

Lecture notes:

Adresă de e-mail: secretariat@e-uvt.ro Website: www.uvt.ro

		PostGIS tutorial 2
C14. Spatial Data Types and		Lecture:
Metadata (1h)		PostGIS tutorial 3
Bibliography		
Thomas Connolly and Carolyn Begg, Da	atabase Systems - A Pr	actical Approach to Design, Implementation,
and Management (4th edition), Addison		
Jeffrey Ullman, Jennifer Widom, A First		ystems (3rd edition), Prentice Hall, 2007
7.2 Seminar / laboratory	Teaching methods	Observations
L1-L5 (10h) Query relational database	Hands-on	Running SQL queries using PostgreSQL &
using SQL SELECT	exercises, case	PG Admin against a pre-built database
L6-L7. (4h) Data definition using SQL	studies, explanation	Changes applied on existing relational
CREATE, DROP	and demonstration.	database
L8 (2h) Knowledge evaluation		Practical / written test to assess the
		intermediary level
L9-L10 (4h) Update relational database		Running SQL commands using PG Admin
records using SQL INSERT, UPDATE,		tool against a pre-built database
DELETE		
L11-L12 (4h) Enabling spatial database		
extensions with PostGIS		
L13-L14. (4h) Managing spatial data in		
PostgreSQL and PostGIS		
Bibliography		
•		

8. Corroborating course content with the expectations held by the representatives of the epistemic community, professional associations and typical employers in the field of the study programme

The content of the discipline was developed in accordance with the curriculum and meets the didactic and scientific requirements corresponding to similar specializations in other universities. The relational database approach is the prevalent, de-facto approach used to implement complex systems across multiple businesses, such as financial, commercial, industrial, or online commerce. The local, national and international workforce market is continuously looking for highly skilled personnel to develop, administer or configure relational, and spatial, database management systems.

9. Assessment

Type of activity	9.1 Assessment criteria	9.2 Assessment methods	9.3 Weight in the final mark
9.4 Lecture	 Good understanding of relational database approach; Relational database design and efficient implementation Basic understanding of Spatial databases Design of simple systems using relational database approach; Argue about advantages and shortcomings of different spatial database approaches 	Written exam	50%

Adresă de e-mail: secretariat@e-uvt.ro
Website: www.uvt.ro

9.5 Seminar / laboratory	 Design of simple systems using relational database approach; Use SQL language to represent end-user queries against relational databases 	Practical/written test during semester	25%
	 Design of simple systems using relational database approach; Use SQL language to represent enduser queries against relational databases; 	Practical / written test at the end / exam	25%

9.6 Minimum performance standard

Minimal knowledge for passing this subject:

- Good knowledge of basic concepts of relational databases
- Design a simple problem using a relational database
- Identify functional dependencies and use them to normalize the database design to 3NF
- Given a simple relational database design, implement it in a RDBMS using SQL commands
- Ability to write simple SQL queries to retrieve data from 2 joined tables

The final grade is computed as a weighted average of grades obtained for components described in 9.4 and 9.5. The exam is passed if each individual grade obtained at components 9.4 and 9.5 (i.e. both lecture and lab evaluations) are greater or equal to 5. This rule is enforcing for all exam periods. The student needs to re-take only the failed component (course or lab grade, respectively), unless the student wishes to re-take both evaluations.

Final remark:

- All students all welcome to tutoring meetings as scheduled by the department.
- All lectures and seminars are going to be kept in modular approach once every two months, based on a schedule that will be later on agreed and communicated to the students in the first week of October.

Date Course convenor's signature

16.09.2025 Marius-Florin Pâslaru

Date of approval in the department Head of department's signature

Website: www.uvt.ro