

COURSE OUTLINE

1. Study programme information

1.1 Higher education institution	Universitatea de Vest din Timișoara
1.2 Faculty / Department	Chimie, Biologie, Geografie / Departamentul de Geografie
1.3 Sub-department	Geografie
1.4 Field of study	Geography
1.5 Level of study	Master's degree
1.6 Study programme / Qualification	Geographic Information Systems

2. Course information

2.1 Course title Location Based Services								
2.2 Course Convenor/ Lecturer			Dr. Octavian Iercan					
2.3 Teaching assista	ant		Dr. Octavian Iercan					
2.4 Year of study	II	2.5 Semester		1	2.6 Type of assessment	Е	2.7 Course type	DS/DA

3. Total estimated time (hours of didactic activities per semester)

3.1 Number of hours per week	4	of which: 3.2 lecture	2	3.3 seminar/laboratory	2
3.4 Total hours in the curriculum	42	of which: 3.5 lecture	14	3.6 seminar/laboratory	28
Time distribution:					hours
Studying textbooks, course materials, bibliography and notes					25
Further research in libraries, on electronic platforms and in the field					20
Preparing seminars/ laboratories, homework, research papers, portfolios and essays					20
Tutoring					12
Examinations					6
Other activities					

3.7 Total hours of individual study	83
3.8 Total hours per semester	125
3.9 Number of credits	5

4. Prerequisites (if applicable)

4.1 based on curriculum	Basics knowledge in Geographic Information Systems; Geoinformatics, Remote
	sensing
4.2 based on competencies	Basic programming with python, data processing techniques, relational databases,
	basis understanding of programming algorithms

5. Conditions (if applicable)

5.1 for the course	•	Computer / laptop with audio-video system for the teacher and students				
	•	internet access; access to the E-learning UVT platform;				
	•	video projector				
	•	the course will be taught modular over 1 week onsite				
5.2 for the seminar/laboratory	•	complete fulfilment of tasks of laboratory work and projects				
	•	Computer / laptop with audio-video system for the teacher and students;				
	•	internet access; access to the Elearning UVT platform;				

Adresă de e-mail: secretariat@e-uvt.ro
Website: www.uvt.ro

•	video projector
•	the applications will be taught modular over 1 week onsite

6. Objectives of the discipline - expected learning outcomes to the formation of which contribute to the completion and promotion of the discipline

tne completion	and promotion of the discipline				
	Understanding the importance of Location Based Services (LBS)				
	Knowledge of the methodologies for obtaining a location using diverse hardware				
	components;				
	• Knowledge of the algorithms used and analytical methodologies for determining locations				
Knowledges	in LBS;				
	Grasping the methodologies involved in using LBS;				
	Understanding the specifics of POI collection needed in LBS;				
	Critical analysis of determining correct positioning using LBS				
	Parallel analysis between algorithms and sensors used for localization				
	Using hardware such as smartphones, GPS receivers, PNG, etc.				
	Using ESRI ArcGIS for data transfer and processing including Python processing				
	Using Open Source GIS such as Quantum GIS and FOOS4G products				
	• Using high-end GPS receivers for precise location determination and understanding the				
Skills	relativeness of the mitigated GPS collection techniques				
	Utilizing various connectivity bridges (WLAN, Bluetooth, GSM, UMTS) in LBS context				
	Data processing and data integration in GIS projects for navigation and LBS				
	Obtaining Smart Analytics with Big Data methodologies for generating results from collected and sourced data in the LBS context				
	Apply working strategies for efficiency and responsibility based on principles, norms, and				
	values according to the ethical code of conduct				
D 11.11.4	• Apply efficient and collaborative working techniques in a multiskill set and				
Responsibility	multidisciplinary environment, respect for multiculturalism and diversity as well as				
and autonomy	acceptance for differences of opinion				
	• Self-assessment of the need for professional development aiming to increase the labor				
	market adaptability				

7. Content

7.1 Lecture	Teaching methods	Observations
Introduction to Location-Based Services	Lecture, Interactive	1 hour
GPS, Galileo, and satellite navigation	presentations,	1 hour
Determining location with WLAN and Bluetooth	heuristic	1 hour
Controlled determination of location with WLAN	conversation,	1 hour
Determining location with WLAN and no calibration	problematization, and hands-on	1 hour
Determining location with Time-of-arrival method for WLAN	examples	1 hour
Determining location using GSM and UMTS networks	Cxumpies	1 hour
Security and privacy in LBS context		1 hour
Multisensor determination of location for results correction and improvement		1 hour
Algorithms for trajectory prediction		1 hour
LBS and data processing		2 hours
Smart analytics and data extraction		2 hours

Bibliography

Schiller, Jochen, and Agnès Voisard, eds. Location-based services. Elsevier, 2004.

Assessing the business impact of location-based services, 2004. Proceedings of the 37th Hawaii International Conference on System Sciences.

Adresă de e-mail: secretariat@e-uvt.ro
Website: www.uvt.ro

- L. S. A.-M. Nivala, An approach to intelligent maps: Context awareness, The 2nd Workshop on 'HCI in Mobile Guides', (2003).
- R. S. Ajay Magon, Lbs, the ingredients and the alternatives.

http://www.gisdevelopment.net/technology/lbs/techlbs006pf.htm.

- M. G. B. Schilit, J. Hong, Wireless location privacy protection, IEEE JNL, Volume 36 (2003), pp. 135–137.
- A. Brimicombe, Gis where are the frontiers now?, Proceedings GIS 2002, (2002), pp. 33–45.
- F. P. Carmine Ciavarella, The design of a handheld, location-aware guide for indoor environments, Springer-Verlag London, (2004).
- G. George Liu, Jr. Maguire, A class of mobile motion prediction algorithms for wireless mobile computing and communications, Mobile Networks and Applications, (1996), pp. 113–121.
- T. Helmreich, Hier geht's lang mit den location based services, 2002.

http://www.contentmanager.de/magazin/news h3153-print hier gehts lang mit den location-based.html.

ntep://www.contentmanager.ac/magazin/news_ns1ss print_mer_gents_n	http://www.contenunanager.de/magazin/news_ns1ss print_mer_gents_tang_init_den_location based.ntmi.				
7.2 Seminar / laboratory	Teaching methods	Observations			
Display data used in LBS projects using web based applications such as	Scientific	2 hours			
Google Maps/Open Streetmap and local installation such as ESRI	explanation, case				
ArcGIS or Google Earth	studies,				
Basic data processing and project preparation	demonstration,	4 hours			
Learning LBS importance and utilization using preinstalled applications	problem-solving	4 hours			
on mobile devices	applications,				
Fieldwork: test various hardware with LBS applicability and multi	Teamwork, results	4 hours			
sensor technologies	marketing and				
Use of GIS data in corroboration with mobile device data collected in	presentation,	2 hours			
the field for better understanding of LBS.	application				
Contribute to a data gathering exercise for future generations and create	development	2 hours			
a database for LBS of Timisoara and the region.					
Extract smart analytics with Python and other programming tools using		4 hours			
Big Data methodologies					
Team Project		6 hours			

Bibliography

Schiller, Jochen, and Agnès Voisard, eds. Location-based services. Elsevier, 2004.

Assessing the business impact of location-based services, 2004. Proceedings of the 37th Hawaii International Conference on System Sciences.

- L. S. A.-M. Nivala, An approach to intelligent maps: Context awareness, The 2nd Workshop on 'HCI in Mobile Guides', (2003).
- R. S. Ajay Magon, Lbs, the ingredients and the alternatives.

http://www.gisdevelopment.net/technology/lbs/techlbs006pf.htm.

- M. G. B. Schilit, J. Hong, Wireless location privacy protection, IEEE JNL, Volume 36 (2003), pp. 135–137. A. Brimicombe, Gis where are the frontiers now?, Proceedings GIS 2002, (2002), pp. 33–45.
- F. P. Carmine Ciavarella, The design of a handheld, location-aware guide for indoor environments, Springer-Verlag London, (2004).
- G. George Liu, Jr. Maguire, A class of mobile motion prediction algorithms for wireless mobile computing and communications, Mobile Networks and Applications, (1996), pp. 113–121.
- T. Helmreich, Hier geht's lang mit den location based services, 2002.

http://www.contentmanager.de/magazin/news h3153-print hier gehts lang mit den location-based.html.

8. Corroborating course content with the expectations held by the representatives of the epistemic community, professional associations and typical employers in the field of the study programme

Course content is conforming to the standard and state of the art research in the field as well with the technological state of the art for LBS in the industry. The course stimulates the students to work as a team to a common goal to find and solve spatial and temporal problems a LBS user experiences in real life. Utilization of GIS and relational databases knowledge as well as better understanding of data manipulation using software scripting languages allows the student to interact in the future with the GIS industry as well as with the data analytics organizations. The Software used in the course is high-end GIS software used by the majority of the

Adresă de e-mail: secretariat@e-uvt.ro
Website: www.uvt.ro

businesses and institutions dealing with GIS.

9. Assessment

Type of activity	9.1 Assessment criteria	9.2 Assessment methods	9.3 Weight in the final mark
9.4 Lecture	Understanding and assimilation of LBS knowledge	Test	50%
9.5 Seminar / laboratory	Presentation and project report content quality	Presentation of results	50%

9.6 Minimum performance standard

- Minimum mark 5 at course evaluation.
- Minimum mark 5 at practical project.

Final remarks:

• All lectures and seminars will be kept in a modular approach established at the beginning of the semester.

Date Course convenor's signature

12.09.2025 Dr. Octavian Iercan

Head of department's signature Date of approval in the department

Website: www.uvt.ro