

COURSE OUTLINE

1. Study programme information

1.1 Higher education institution	Universitatea de Vest din Timișoara
1.2 Faculty / Department	Chimie, Biologie, Geografie / Departamentul de Geografie
1.3 Sub-department	Geografie
1.4 Field of study	Geography
1.5 Level of study	Master's degree
1.6 Study programme / Qualification	Geographic Information Systems

2. Course information

2.1 Course title			Ge	eomoi	rphometry			
2.2 Course convenor/ Lecturer			Prof. Dr. Habil. Lucian DRĂGUŢ					
2.3 Teaching assistant			Prof. Dr. Habil. Lucian DRĂGUŢ					
2.4 Year of study	II	2.5 Semester		1	2.6 Type of assessment	Е	2.7 Course type	DS/
								DO

3. Total estimated time (hours of didactic activities per semester)

3.1 Number of hours per week	4	of which: 3.2 lecture	2	3.3 seminar/laboratory	2
3.4 Total hours in the curriculum	56	of which: 3.5 lecture	28	3.6 seminar/laboratory	28
Time distribution:					hours
Studying textbooks, course materials, b	ibliogr	aphy and notes			20
Further research in libraries, on electronic platforms and in the field					15
Preparing seminars/ laboratories, homework, research papers, portfolios and essays					20
Tutoring					10
Examinations					4
Other activities					
3.7 Total hours of individual study	69				•

3.8 Total hours per semester	125
3.9 Number of credits	5

4. Prerequisites (if applicable)

4.1 based on curriculum	
4.2 based on competencies	

5. Conditions (if applicable)

5.1 for the course	•	Computer / laptop with audio-video system for the teacher and students
	•	internet access;
	•	video projector
5.2 for the seminar/laboratory	•	complete fulfilment of tasks of laboratory work and projects
	•	Computer / laptop with audio-video system for the teacher and students;
	•	internet access;
	•	video projector

6. Objectives of the discipline - expected learning outcomes to the formation of which contribute to the completion and promotion of the discipline

the completion	
	• Knowledge of concepts in geomorphometry
	• Understanding Digital Elevation Models (DEMs) and their processing
	• Understanding the differences between general and specific geomorphometry
Knowledges	• Knowledge on computing the basic geomorphometric variables
Kilowicuges	• Knowledge on analysis and classification of geomorphometric objects
	• Understanding the impact of DEM errors on geomorphometric analysis
	• Understanding the importance of algorithms and differences they can lead to
	• Understanding the role of scale in analysis
	• Operational skills in ArcGIS Pro, SAGA GIS, Whitebox Tools, and eCognition
	• Compute the basic geomorphometric variables in specific software
Skills	• Compare the graphic results of morphometric variables using different methods
	Classify and analyse geomorphometric objects
	Analyse different types of Digital Elevation Models
	• Understanding of ethics in academic conduct (correct citations, avoiding plagiarism,
	avoiding fabrication)
	• Developing team working abilities
	• The ability to solve specific tasks autonomously
	• The ability to identify/select appropriate solutions and generate innovative ideas
Responsibility	• The ability to correctly/effectively identify and plan tasks specific to a particular project
and autonomy	• The application of effective and responsible work strategies, based on the principles, norms
	and values of the code of professional ethics
	• Application of effective work techniques in a multidisciplinary team, ethical attitude, respect
	for diversity and multiculturalism, acceptance of diversity of opinion
	• Self-assessment of the need for continuous professional training for the purpose of insertion
	and adaptability to the requirements of the labor market

7. Content

Teaching methods	Observations
Lecture, Interactive	2 hours
presentations,	4 hours
heuristic	4 hours
,	2 hours
*	
	2 hours
examples	4 hours
	2 hours
	4 hours
	2 hours
	2 hours
	Lecture, Interactive presentations,

References

• Hengl, T., Reuter, H.I. (Eds.) 2009, Geomorphometry. Concepts, Software, Applications. Elsevier.

- Bishop, M.P. Young, B. W. Huo, D. 2018, Geomorphometry: Quantitative Land-Surface Analysis and Modeling, Elsevier, <u>https://doi.org/10.1016/B978-0-12-409548-9.11469-1</u>.
- Guth, P.L., Niekerk, A.V., Grohmann, C.H., Muller, J.-P., Hawker, L., Florinsky, I.V., Gesch, D., Reuter, H.I., Herrera-Cruz, V., Riazanoff, S., Lópéz-Vázquez, C., Carabajal, C.C., Albinet, C., Strobl, P., 2021 – *Digital Elevation Models: Terminology and Definitions. Remote Sensing*, 13(18):3581. <u>https://doi.org/10.3390/rs13183581</u>

[•] https://geomorphometry.org/

7.2 Seminar / laboratory	Teaching methods	Observations
Acquisition of SRTM DEMs and their visual analysis Online	Hands-on exercises, case	2 hours
TIN representation and comparison with gridded models Online	studies, scientific	2 hours
Identification and removal of errors in DEMs Online	explanation and	2 hours
Derivation of basic land-surface variables using different algorithms and quantitative comparison of the results Online	demonstration.	4 hours
Statistical analysis of land-surface variables Online		4 hours
Conducting geomorphometric analysis at various scales and comparing the results		4 hours
Derivation of stream network and basins		2 hours
Segmentation and classification of DEMs		4 hours
Team project]	4 hours

References

• Literature will be selected individually, according to research interests of the students.

• Additional references and presentations are posted on Google Classroom

8. Corroborating course content with the expectations held by the representatives of the epistemic community, professional associations and typical employers in the field of the study programme

The content of the discipline was developed in accordance with the curriculum and meets the didactic and scientific requirements corresponding to similar specializations in other universities. Course content will offer the students the necessary skills to start-up research projects leading to MSc Theses. Some projects are expected to end-up in journal publications. Skills acquired here and developed further will enable students starting a PhD program. The software used in the practical applications are among the most modern and frequently used in specialized institutions. Such applied training makes students compatible with the job market in the field of geographic information systems, or research activity.

9. Assessment

Type of activity	9.1 Assessment criteria	9.2 Assessment methods	9.3 Weight in			
			the final mark			
9.4 Lecture	Understanding and assimilation of theoretical knowledge	Evaluation/test	20%			
9.5 Seminar / laboratory	Practical projects	The degree to which students are able to conduct geomorphometric analysis.	80%			
9.6 Minimum performance standard						
• Minimum mark 5 at course evaluation.						

- Minimum mark 5 at course evaluation.
- Minimum mark 5 at practical activities.

Date

12.09.2024

Course convenor's signature

Prof. Dr. Habil. Lucian DRĂGUŢ

Date of approval in the department

Head of department's signature