COURSE OUTLINE

1. Study programme information

1.1 Higher education institution	West University of Timisoara
1.2 Faculty / Department	Chemistry, Biology, Geography / Geography
1.3 Sub-department	
1.4 Field of study	Geography
1.5 Level of study	Master's degree
1.6 Study programme / Qualification	Geographic Information Systems

2. Course information

2.1 Course title	Spatial data acquisition methods
2.2 Course convenor/ Lecturer	Assoc. Prof. Alexandru Onaca
2.3 Teaching assistant	Assoc. Prof. Alexandru Onaca
2.4 Year of study I 2.5 Semester	I 2.6 Type of assessment E 2.7 Course type

3. Total estimated time (hours of didactic activities per semester)

3.1 Number of hours per week	4	of which: 3.2 lecture	2	3.3 seminar/laboratory	2
3.4 Total hours in the curriculum	56	of which: 3.5 lecture	28	3.6 seminar/laboratory	28
Time distribution:			hours		
Studying textbooks, course materials.	, bibliogr	aphy and notes			15
Further research in libraries, on electronic platforms and in the field			25		
Preparing laboratories, homework, research papers, portfolios and essays			35		
Tutoring			15		
Assignments/Exams			4		
Other activities					

3.7 Total hours of individual study	94
3.8 Total hours per semester	150
3.9 Number of credits	6

4. Prerequisites (if applicable)

1 \ 11	,
4.1 based on curriculum	•
4.2 based on competencies	Basic knowledge of GIS concepts and related applications

5. Conditions (if applicable)

5.1 for the course	• Lectures will be thought online using Google Meet; all materials related to this course will be uploaded on Moodle platform https://elearning.e-uvt.ro/
5.2 for the seminar/laboratory	• Several applications will be done in the field using data acquisitions equipment and the others online;

6. Accumulated specific competencies

	Knowledge of concepts in Geographic Information Systems
_ s	• Understanding of the conceptual model of spatial data, concepts of scale, resolution and spatial data
na	integration in GIS
ssic	Describe and implement data collection workflows
edu Jbe	• Capabilities to collect, record, and use the spatial data within a variety of environments
Professional competencies	• Knowledge and operational skills on DEM data analysis and integration in GIS projects
	• Knowledge and operational skills on satellite images processing and integration in GIS projects
	• Operational skills in ArcGIS, ENVI, QGIS, Agisoft Professional
	• Understanding of ethics in academic conduct (correct citations, avoiding plagiarism)
sal	Developing team working abilities.
Transversal	
ans ans	
Tr	

7. Course objectives (as resulting from the accumulated specific competencies)

7.1 General objective	• Students are able to integrate and analyze appropriate spatial data types from different sources into a GIS project
7.2 Specific objectives	 Students are able to identify, acquire and integrate satellite imagery, aerial photos, DEMs, field data and other spatial data from various sources Students are able to process and analyze different types of spatial data in a GIS project

8. Content

8.1 Lecture	Teaching	Observations
	methods	
Introduction to spatial data and its acquisition; current trends in	Lectures	2
geographical data acquisition		
Chen Q.Y., Lee, C.Y., 2001, Geographical Data Acquisition, New York,		
Springer-Verlag, 265 p.		
Conceptual models of reality and data structures used in GIS	Lectures	2
Chen Q.Y., Lee, C.Y., 2001, Geographical Data Acquisition, New York,		
Springer-Verlag, 265 p.		
Structure of a GIS project – examples of data types, formats, attribute	Lectures	2
types, metadata, scale, resolution, accuracy		
http://www.spatialanalysisonline.com/HTML/index.html		
Primary and secondary spatial data acquisition methods	Lectures	2
ch.9, 10, 12 from Chen Q.Y., Lee, C.Y., 2001, Geographical Data		
Acquisition, New York, Springer-Verlag, 265 p.		
In situ measurements, GPS data, terrestrial scanning - characteristics and	Lectures	4
integration in a GIS projects		
Aerial photos and satellite images – types, sources, acquisition and	Lectures	4
processing		
ch.9 from Chen Q.Y., Lee, C.Y., 2001, Geographical Data Acquisition,		
New York, Springer-Verlag, 265 p.		
Mather, P., Koch, M., 2011, Computer Processing of Remotely-Sensed		
Images: An Introduction, 4th Edition, Wiley, 460 p.		

Digital Elevation Models – types, sources, acquisition and processing Wilson, J., 2018, Environmental applications of digital terrain modelling, Wiley-Blackwell, 359 p. Fleming, C, Marsh, S.H., Cabrera, M.C., 2010, Elevation Models for Geoscience: Geological Society Special Publication 345, Geological Society of London, 146 p.	Lectures	4
Type of climate data – acquisition and integration in a GIS project https://www.worldclim.org/data/index.html https://power.larc.nasa.gov/data-access-viewer/ https://www.ncdc.noaa.gov/IPS/mcdw/mcdw.html https://neo.sci.gsfc.nasa.gov/view.php?datasetId=GISS_TA_M https://climate.esa.int/en/odp/#/dashboard	Lectures	2
Administrative and statistical data https://www.naturalearthdata.com/downloads/ https://www.diva-gis.org/gdata http://download.geofabrik.de/europe/romania.html https://ec.europa.eu/eurostat/data/database	Lectures	2
Derived spatial data (digitizing, editing, indices, landcover, thematic classification)	Lectures	2
Online platforms and services for spatial data and maps https://earthengine.google.com/ https://www.globalforestwatch.org/ https://edo.jrc.ec.europa.eu/edov2/php/index.php?id=1000	Lectures	2

References

Casagrande, G., Sik, A., Szabo. G., 2017, Small Flying Drones: Applications for Geographic Observation, Springer, 168 p.

Chen Q.Y., Lee, C.Y., 2001, Geographical Data Aquisition, New York, Springer-Verlang, 265 p.

Fleming, C, Marsh, S.H., Cabrera, M.C., 2010, Elevation Models for Geoscience: Geological Society Special Publication 345, Geological Society of London, 146 p.

Longley, P.A., Goodchild, M., Maguire, D.J., Rhind, D.W., 2010, Geographic Information Systems and Science, John Wiley & Sons, 560 p.

Mather, P., Koch, M., 2011, Computer Processing of Remotely-Sensed Images: An Introduction, 4th Edition, Wiley, 460 p.

Wilson, J., 2018, Environmental applications of digital terrain modelling, Wiley-Blackwell, 359 p.

http://2012books.lardbucket.org/pdfs/geographic-information-system-basics.pdf

http://www.spatialanalysisonline.com/HTML/index.html

8.2 Seminar / laboratory	Teaching	Observations
	methods	
Spatial data acquisition and integration in a GIS project – study area	Lecture and	6
chosen by students (administrative, DEMs, satellite images, statistical data	hands-on	
etc.)	exercises	
GPS data integration and analysis in a GIS project	Lecture, data	6
Ch. 6 and 7 from Chen Q.Y., Lee, C.Y., 2001, Geographical Data	acquisition in the	
Acquisition, New York, Springer-Verlag, 265 p.	field and hands-	
	on exercises	
Data acquisition and processing using UAV	Lecture and	6
Casagrande, G., Sik, A., Szabo. G., 2017, Small Flying Drones:	hands-on	
Applications for Geographic Observation, Springer, 168 p.	exercises	
Data acquisition and processing using terrestrial laser scanner	Lecture, data	6
Telling, J., Lyda, A., Hartzell, P., Glennie, C., 2017. Review of Earth	acquisition in the	
science research using terrestrial laser scanning. Earth-Science Rev. 169,	field and hands-	
35-68, doi.org/https://doi.org/10.1016/j.earscirev.2017.04.00	on exercises	

Student projects and exercises evaluation	Presentation of	4
	the project results	

References

Casagrande, G., Sik, A., Szabo. G., 2017, Small Flying Drones: Applications for Geographic Observation, Springer, 168 p.

Chen Q.Y., Lee, C.Y., 2001, Geographical Data Acquisition, New York, Springer-Verlag, 265 p

Mather, P., Koch, M., 2011, Computer Processing of Remotely-Sensed Images: An Introduction, 4th Edition, Wiley, 460 p.

Telling, J., Lyda, A., Hartzell, P., Glennie, C., 2017. Review of Earth science research using terrestrial laser scanning. Earth-Science Rev. 169, 35–68. https://doi.org/https://doi.org/10.1016/j.earscirev.2017.04.007

All the necessary materials for learning will be uploaded in electronic format on e-learning platform.

9. Corroborating course content with the expectations held by the representatives of the epistemic community, professional associations and typical employers in the field of the study programme

Course content will offer the students the necessary skills to acquire, integrate, process and analyze different types of spatial data in order to start-up GIS projects in the field of geosciences. The course will offer several software solutions (commercial and open-source) used by companies in the field of GIS.

10. Assessment

Type of activity	10.1 Assessment criteria	10.2 Assessment methods	10.3 Weight in the final
			mark
10.4 Course	Knowledge and understanding related to spatial data acquisition and integration	Intermediate evaluation: Oral evaluation of preliminary results: Design of approach (spatial data acquisition project)	25%
		Final presentation of the spatial data acquisition project - Oral evaluation of results	25%
10.5 Laboratory	Digital elevation models: acquisition and data processing in GIS	Intermediate evaluation: Oral evaluation of results and processing skills	10%
	Spatial data acquisition in the field (field application)	Intermediate evaluation: Oral evaluation of results and processing skills	20%
	GIS project (geodatabase and project presentation)	Intermediate evaluation: Presentation of the project results	20%
10.6 Minimum pe	erformance standard		
• grade 5 as	s a mean of evaluation from the ab	ove mentioned compulsory activities	·

Date

Course convenor's signature

14.09.2024

Date of approval in the department

Head of department's signature