

COURSE OUTLINE

1. Study programme information

1.1 Higher education institution	Universitatea de Vest din Timișoara
1.2 Faculty / Department	Chimie-Biologie-Geografie/Departamentul de Geografie
1.3 Sub-department	Geografie
1.4 Field of study	Geography
1.5 Level of study	Master's degree
1.6 Study programme / Qualification	Geographic Information Systems

2. Course information

2.1 Course title Spatial analysis and modelling in GIS							
2.2 Course conveno	or/Le	cturer	Conf. univ. dr. Marcel Török-Oance				
2.3 Teaching assista	ant		Conf. univ. dr. Marcel Török-Oance				
2.4 Year of study	Ι	2.5 Semester	r II 2.6 Type of assessment E 2.7 Course type				DI

3. Total estimated time (hours of didactic activities per semester)

3.1 Number of hours per week	4	of which: 3.2	1	3.3 seminar/laboratory	2
		lecture			
3.4 Total hours in the curriculum	42	of which: 3.5	14	3.6 seminar/laboratory	28
		lecture			
Time distribution:					hours
Studying textbooks, course materials, bibliography and notes					16
Further research in libraries, on electronic platforms and in the field					22
Preparing seminars/ laboratories, homework, research papers, portfolios and essays					25
Tutoring					10
Examinations					10
Other activities					
3.7 Total hours of individual study 83					

3.8 Total hours per semester	125
3.9 Number of credits	5

4. Prerequisites (if applicable)

4.1 based on	•	GIS, Remote Sensing
curriculum		
4.2 based on	•	Basic knowledges in GIS and Remote Sensing
competencies		

5.1 for the course	 at least 50% attendance at course activities; Computer / laptop for the teacher, computers / laptops / tablets for each student, internet access, access to the Elearning UVT platform Google Meet will be used for the online activity. 50% of the courses will be taught online
5.2 for the laboratory	 attendance is mandatory complete fulfilment of tasks of laboratory work and projects Computer with audio / video system and internet connection, GIS softwares (IDRISI, ArcgGIS). The support materials/tutorials, the data used for the practical works and the references will be accessible on the Elearning UVT platform Google Meet will be used for the online activity. 30% of the practical activities will be taught online

5. Conditions (if applicable)

6. Objectives of the discipline - expected learning outcomes to the formation of which contribute to the completion and promotion of the discipline

	Knowledge of concepts in Spatial Analysis
	• Students are able to choose and apply appropriate methods of spatial analysis in order to successfully solve geographical problems
Knowladges	Knowledge of concepts in and Spatial Analysis GIS modeling
Knowledges	Knowledge of Spatial Analysis methods
	Knowledge of GIS modeling methods and algorithms
	• Correlative analysis of variation and dynamics of territorial components and processes
	using GIS techniques.
	 Hands-on skills in Spatial Analyisis in various softwares
	• Developing an objective and analytical spirit in students; appreciating the advantages of
Skils	each type of product or technique and understanding their complementarity;
	• Developing the ability of scientific analysis and communication in an academic
	environment
	• Applying efficient and responsible work strategies, based on the principles, norms and
	values of ethics in academic conduct;
Responsibility	• Self-assessment of the need for continuous professional training in order to insert and
and autonomy	adapt to the requirements of the labour market.
	• Applying efficient work techniques in a multidisciplinary team, ethical attitude towards the
	group, respect for diversity and multiculturalism; acceptance of diversity of opinion

6. Content

6.1 Lecture	Teaching	Observations
	methods	
1. Introduction in Spatial Analysis.	Interactive presentations, heuristic conversation, problematization	*** Course material posted on the elearning UVT platform Longley. P. A., Goodchild, M.F., Maguire, D.J., Rhind, D.W. (2010), Geographic Information Systems and Science, Edit. John Wiley & Sons. Stillwell, J., Clarke, G., 2004, Applied GIS and Spatial Analysis, Edit John Wiley &Sons.
2. Spatial analysis of point data: spatial density	and hands-on	*** Course material posted on the elearning UVT
analysis, spatial analysis of areas of influence	examples	platform Fischer, M., Getis, A., 2010, Handbook of Applied Spatial Analysis - Software Tools, Methods and Applications, Springer
3. Logical operators and Boolean analysis		*** Course material posted on the elearning UVT platform Eastman J., R., (2020) – TerrSet2020 Manual. Geospatial Monitoring and Modeling System, Clark University, Graduate School of Geography, Worcester, Masachusetts. Stillwell, J., Clarke, G., 2004, Applied GIS and Spatial Analysis, Edit John Wiley &Sons.
4. Using fuzzy membership family functions for		*** Course material posted on the elearning UVT
standardizing geo-spatial data.		platform Eastman J., R., (2020) – TerrSet2020 Manual. Geospatial Monitoring and Modeling System, Clark University, Graduate School of Geography, Worcester, Masachusetts.
5. GIS as a decision support system: Multi		*** Course material posted on the elearning UVT
Criteria Evaluation		platform Eastman J., R., (2020) – TerrSet2020 Manual. Geospatial Monitoring and Modeling System, Clark University, Graduate School of Geography, Worcester, Masachusetts. Stillwell, J., Clarke, G., 2004, Applied GIS and Spatial Analysis, Edit John Wiley &Sons.
6. Raster and vector distance operators in GIS		*** Course material posted on the elearning UVT
		platform Longley. P. A., Goodchild, M.F., Maguire, D.J., Rhind, D.W. (2006), Geographic Information Systems and Science, Edit. John Wiley & Sons. Eastman J., R., (2020) – TerrSet2020 Manual. Geospatial Monitoring and Modeling System, Clark University, Graduate School of Geography, Worcester, Masachusetts.
7. Spatial and spatio-temporal modeling methods in GIS		 Course material posted on the elearning UVT platform Eastman J., R., (2020) – TerrSet2020 Manual. Geospatial Monitoring and Modeling System, Clark University, Graduate School of Geography Longley. P. A., Goodchild, M.F., Maguire, D.J., Rhind, D.W. (2010), Geographic Information Systems and Science, Edit. John Wiley & Sons., Worcester, Masachusetts.

Bibliography
Blaschke, T., Lang, S., Hay, G.J., (2008) Object-based image analysis, Spatial Concepts for knowledge-driven
remote sensing applications, Lecture Notes in Geoinformation and Cartography;
Briassoulis, H., Kavroudakis, D., Soulakellis, N., (2019), The Practice of Spatial Analysis, Springer.
Eastman J., R., (2020) - TerrSet2020 Manual. Geospatial Monitoring and Modeling System, Clark University,
Graduate School of Geography, Worcester, Masachusetts.
Longley, P.A., Goodchild, M., Maguire, D.J., Rhind, D.W. (2010)- Geographic Information Systems and
Science, John Wiley & Sons, 560 pp.
Fischer, M., Getis, A., 2010, Handbook of Applied Spatial Analysis - Software Tools, Methods and
Applications, Springer.
Stillwell, J., Clarke, G. 2004, Applied GIS and Spatial Analysis, Edit John Wiley & Sons.
*** Course presentations posted on the elearning UVT platform

6.2 Seminar / laboratory	Teaching methods	Observations
1. Analysis of the spatial distribution	Hands-on exercises, case studies,	McCoy, J., (2008), Geoprocessing in ArcGIS,
of point data (ArcGIS)	scientific explanation and	ESRI, Redlands.
or point data (riteoris)	demonstration	Gorr W. L. and Kurland K.S. 2021. GIS Interial for Arcois Pro 2.8 Redlands California: Esri
	demonstration.	Press
		*** Laboratory tutorials and data posted on the
		UVT elearning platform
2. Using fuzzy membership family		Eastman J., R., (2020) – TerrSet2020 Tutorial.
functions for standardizing geo-		Geospatial Monitoring and Modeling System,
spatial data in IDRISI TerrSet		Geography, Worcester, Masachusetts,
software		*** Laboratory tutorials and data posted on the
software		UVT elearning platform
3. Multicriteria evaluation in IDRISI		Eastman J., R., (2020) – TerrSet2020 Tutorial.
TerrSet și ArcGIS		Geospatial Monitoring and Modeling System, Clark
2		Worcester. Masachusetts.
		McCoy, J., (2008), Geoprocessing in ArcGIS, ESRI,
		Redlands.
		Gorr W. L. and Kurland K.S. 2021. Gis Tutorial
		Press
		*** Laboratory tutorials and data posted on the
		UVT elearning platform
1 Distance operators in IDRISI		Eastman J., R., (2020) – TerrSet2020 Tutorial.
4. Distance operators in iDRIST		Geospatial Monitoring and Modeling System, Clark
Terrset SI ArcGIS		University, Graduate School of Geography,
		Worcester, Masachusetts.
		MicCoy, J., (2008), Geoprocessing in ArcGiS, ESRI, Redlands
		*** Laboratory tutorials and data posted on the
		UVT elearning platform
5 Modeling stochastic phenomena		Eastman J., R., (2020) – TerrSet2020 Tutorial.
using Markov chains (IDDICI		Geospatial Monitoring and Modeling System, Clark
Tome of a ferrance)		University, Graduate School of Geography,
remset sonware).		worcester, masachusetts. *** Laboratory tutorials and data postad on the
		UVT elearning platform
6 Time series analysis in IDRISI		Eastman J., R., (2020) – TerrSet2020 Tutorial.
TarrSat software		Geospatial Monitoring and Modeling System, Clark
I CHOCI SUILWAIC		University, Graduate School of Geography,
		Worcester, Masachusetts.

Adresă poștală: Bd. Vasile Pârvan nr. 4, cod poștal 300223, Timișoara, jud. Timiș, România Număr de telefon: +40-(0)256-592.300 (310) Adresă de e-mail: <u>secretariat@e-uvt.ro</u> Website: <u>www.uvt.ro</u>

		*** Laboratory tutorials and data posted on the UVT elearning platform
7. Land Change Modeller for spatio- temporal changes analysis		Eastman J., R., (2020) – TerrSet2020 Tutorial. Geospatial Monitoring and Modeling System, Clark University, Graduate School of Geography, Worcester, Masachusetts. *** Laboratory tutorials and data posted on the UVT elearning platform
8. Building models with Macro Modeler (IDRISI) and Model Builder (ArcGIS); various applications.		Eastman J., R., (2020) – TerrSet2020 Tutorial. Geospatial Monitoring and Modeling System, Clark University, Graduate School of Geography, Worcester, Masachusetts. Gorr W. L. and Kurland K.S. 2021. Gis Tutorial for Arcgis Pro 2.8. Redlands California: Esri Press *** Laboratory tutorials and data posted on the UVT elearning platform
9. Individual project / project assistance	Individual work, practical application, project presentation	The practical assignments are made individually by formulating problems that students will find solutions through spatial analysis.

Bibliography

Eastman J., R., (2020) – TerrSet2020 Tutorial. Geospatial Monitoring and Modeling System, Clark University, Graduate School of Geography, Worcester, Masachusetts.

Gorr W. L. and Kurland K.S. 2021. Gis Tutorial for Arcgis Pro 2.8. Redlands California: Esri Press.

McCoy, J. 2008. Geoprocessing in ArcGIS. ESRI Redlans USA, 363 pp.

*** Laboratory tutorials and data posted on the UVT elearning platform

The bibliography for the student's projects will be chosen individually, depending on their specific.

7. Corroborating course content with the expectations held by the representatives of the epistemic community, professional associations and typical employers in the field of the study programme

The content of the course was developed in accordance with the curriculum and meets the didactic and scientific requirements corresponding to similar specializations from other universities. Course content will offer the students the necessary skills to start-up research projects leading to MSc Theses and to enroll in a PhD program. It stimulates the personal involvement of students in identifying problems that are suitable for spatial analysis and modelling in the GIS environment. It facilitates the initiation by students of contacts and possible collaborations with companies and institutions in the field of GIS. The softwares used in practical applications are one of the most modern and frequently used in specialized institutions.

8. Assessment

Type of activity	8.1 Assessment criteria	8.2 Assessment methods	8.3 Weight in the final mark			
8.4 Lecture	Course activity	Continuous evaluation	20%			
8.5 Seminar / laboratory	Assessment of practical tasks during the semester	Practical tasks evaluation	30%			
	Quality of the project and presentation. The degree to which students are able to conduct a spatial analysis approach.	Project evaluation	50%			
8.6 Minimum performance standard						
Minimum mark 5 at course evaluation.						
Minimum mark 5 at practical activities.						

Date 16.01.2024

Date of approval in the department

Course convenor's signature

Head of department's signature Lector univ. dr. Ioan-Sebastian JUCU