

COURSE OUTLINE

1. Study programme information

1.1 Higher education institution	Universitatea de Vest din Timișoara
1.2 Faculty / Department	Chimie, Biologie, Geografie / Departamentul de Geografie
1.3 Sub-department	Geografie
1.4 Field of study	Geography
1.5 Level of study	Master's degree
1.6 Study programme / Qualification	Geographic Information Systems

2. Course information

2.1 Course title			Pr	ograr	nming			
2.2 Course convenor/ Lecturer			Le	Lect. Dr. Dornik Andrei				
2.3 Teaching assistant			Le	Lect. Dr. Dornik Andrei				
2.4 Year of study	1	2.5 Semester		2	2.6 Type of assessment	Е	2.7 Course type	DS/
								DO

3. Total estimated time (hours of didactic activities per semester)

3.1 Number of hours per week	3	of which: 3.2 lecture	1	3.3 practical activity	2
3.4 Total hours in the curriculum	42	of which: 3.5 lecture	14	3.6 practical activity	28
Time distribution:					hours
Studying textbooks, course materials, bibliography and notes					25
Further research in libraries, on electronic platforms and in the field					25
Preparing seminars/ laboratories, homework, research papers, portfolios and essays					15
Tutoring					9
Examinations					9
Other activities					

3.7 Total hours of individual study	83
3.8 Total hours per semester	125
3.9 Number of credits	5

4. Prerequisites (if applicable)

4.1 based on curriculum	Introduction to programming; Basics in informatics; Geographic Information
	Systems; Geoinformatics
4.2 based on competencies	Basic skills of programming; analytical spirit and the ability to break down
	problems into sub-problems

5. Conditions (if applicable)

5.1 for the course	•	Computer / laptop for the teacher and students		
	•	internet access; access to the Elearning UVT platform;		
	•	video projector		
5.2 for the practical activity	•	complete fulfilment of tasks of laboratory work and projects		
	•	Computer / laptop for the teacher and students;		
	•	internet access; access to the Elearning UVT platform;		
	•	video projector		

Adresă de e-mail: secretariat@e-uvt.ro
Website: www.uvt.ro

6. Objectives of the discipline - expected learning outcomes to the formation of which contribute to the completion and promotion of the discipline

the completion	and promotion of the discipline
	Advanced knowledge on computer science and programming for GIS
Knowledges	• Concepts related to the structure and operation of a program and web GIS applications
Kilowieuges	Concepts and methodologies regarding the development of GIS applications
	Understanding operation of an advanced program
Skills	 Use Python programming language for GIS and remote sensing analysis: Data conversion: spreadsheets, GPS data, ASCII Grid files, Rasterizing a shapefile Working with projections Vector data analysis: measuring distance, ccessing and editing shapefiles, reading shapefile attributes and geometry, changing a shapefile, adding fields, merging and splitting shapefiles, subsetting spatially, performing selections, attribute selections, dot density calculations, geocoding, overlay analysis Raster Analysis: reading grids, writing grids, map algebra, histograms, feature extraction, extract by mask, multi-criteria analysis Network Analyst and Spatial Analyst: elevation data, creating a shaded relief, creating elevation contours, working with LIDAR data, creating a grid from LIDAR, creating a triangulated irregular network, interpolation methods Remote Sensing: band math, swapping image bands, performing a histogram stretch, clipping images, creating a Normalized Difference Vegetation Index, classifying images (supervised and unsupervised classification), change detection Visualizing analysis results: creating images for visualization, choropleth maps, Web apps
Responsibility and autonomy	 Development of a critical and analytical spirit among students; appreciating the advantages of using algorithmic thinking for GIS The ability to solve specific GIS tasks autonomously The ability to identify/select appropriate solutions and generate innovative ideas The ability to correctly/effectively identify and plan tasks specific to a particular GIS project The application of effective and responsible work strategies, based on the principles, norms and values of the code of professional ethics Application of effective work techniques in a multidisciplinary team, ethical attitude, respect for diversity and multiculturalism, acceptance of diversity of opinion Self-assessment of the need for continuous professional training for the purpose of insertion and adaptability to the requirements of the labor market Capitalizing on the results obtained to analyses, studies and GIS projects

7. Content

7.1 Lecture	Teaching methods	Observations
1. Geospatial Python environment. ArcPy. Working with projections.	Lecture, Interactive	2 hours
Data conversion	presentations,	
2. Vector data analysis	heuristic	2 hours
3. Raster Analysis	conversation,	2 hours
4. Network Analyst and Spatial Analyst	problematization and	2 hours
5. Remote Sensing	hands-on examples	2 hours
6. Visualizing GIS analysis results		2 hours
7. Evaluation, Feedback		2 hours

Bibliography

- Paul A. Zandbergen, 2020, Python Scripting for ArcGIS Pro, Esri Press, New York Street, Redlands, California
- Paul A. Zandbergen, 2020, Advanced Python Scripting for ArcGIS Pro, Esri Press, New York Street,

Adresă de e-mail: secretariat@e-uvt.ro
Website: www.uvt.ro

Redlands, California

- Joel Lawhead, 2015, Learning Geospatial Analysis with Python. An effective guide to geographic information system and remote sensing analysis using Python. Second Edition. Packt publishing, Birmingham
- Michael Diener, 2015, Python Geospatial Analysis Cookbook. 60 recipes to work with topology, overlays, indoor routing, and web application analysis with Python, Packt publishing, Birmingham
- Silas Toms, 2015, ArcPy and ArcGIS Geospatial Analysis with Python, Packt publishing, Birmingham
- Erik Westra, 2013, Python Geospatial Development Second Edition. Learn to build sophisticated mapping applications from scratch using Python tools for geospatial development, Packt publishing, Birmingham
- Course and practical activity materials, presentations and references posted on Elearning UVT Platform (https://elearning.e-uvt.ro/)

7.2 Practical activity	Teaching methods	Observations
1. Geospatial Python environment. ArcPy. Data conversion with Python.	Hands-on exercises,	4 hours
Using spreadsheets. Using GPS data. ASCII Grid files. Working with	case studies,	
projections. Reprojections. Rasterizing a shapefile	scientific	
2. Vector data analysis with Python. Measuring distance. Accessing and	explanation and	4 hours
editing shapefiles. Reading shapefile attributes and geometry. Changing	demonstration.	
a shapefile. Adding fields. Merging and splitting shapefiles. Subsetting		
spatially. Performing selections. Attribute selections. Dot density		
calculations. Geocoding. Overlay		
3. Raster Analysis with Python. Reading grids. Writing grids. Map		4 hours
algebra. Histogram. Feature extraction. Extract by mask. Multi-criteria		
analysis		
4. Network Analyst and Spatial Analyst with Python. Elevation Data.		4 hours
Creating a shaded relief. Creating elevation contours. Working with		
LIDAR. Creating a grid from LIDAR. Creating a triangulated irregular		
network. Interpolation methods		
5. Python and Remote Sensing. Band math. Swapping image bands.		4 hours
Performing a histogram stretch. Clipping images. Creating a Normalized		
Difference Vegetation Index. Classifying images (supervised and		
unsupervised classification). Change detection		
6. Visualizing your analysis. Creating images for visualization.		6 hours
Choropleth maps. Web apps.		
7. Evaluation, Feedback		2 hours

Bibliography

- Paul A. Zandbergen, 2020, Python Scripting for ArcGIS Pro, Esri Press, New York Street, Redlands, California
- Paul A. Zandbergen, 2020, Advanced Python Scripting for ArcGIS Pro, Esri Press, New York Street, Redlands, California
- Joel Lawhead, 2015, Learning Geospatial Analysis with Python. An effective guide to geographic information system and remote sensing analysis using Python. Second Edition. Packt publishing, Birmingham
- Michael Diener, 2015, Python Geospatial Analysis Cookbook. 60 recipes to work with topology, overlays, indoor routing, and web application analysis with Python, Packt publishing, Birmingham
- Silas Toms, 2015, ArcPy and ArcGIS Geospatial Analysis with Python, Packt publishing, Birmingham
- Erik Westra, 2013, Python Geospatial Development Second Edition. Learn to build sophisticated mapping applications from scratch using Python tools for geospatial development, Packt publishing, Birmingham
- Course and practical activity materials, presentations and references posted on Elearning UVT Platform (https://elearning.e-uvt.ro/)

Adresă de e-mail: secretariat@e-uvt.ro
Website: www.uvt.ro

8. Corroborating course content with the expectations held by the representatives of the epistemic community, professional associations and typical employers in the field of the study programme

The content of the discipline was developed in accordance with the curriculum and meets the didactic and scientific requirements corresponding to similar specializations in other university centers. Programming facilitates the acquisition of knowledge in carrying out a research project, both from a theoretical point of view and from the point of view of working methods in the field, developing students' analytical thinking, the ability to problematize, to manage a scientific approach, of a database and its operation. The software used in the practical applications are among the most modern and frequently used in specialized institutions. Such applied training makes students compatible with the job market in the field of geographic information systems, or research activity.

9. Assessment

Type of activity	9.1 Assessment criteria	9.2 Assessment methods	9.3 Weight in the final mark			
9.4 Lecture	Understanding and assimilation of knowledge	Oral evaluation	20%			
9.5 Practical activity	Individual or group (2-3 students) project	Evaluation of: - program complexity - program functionality	80%			
9.6 Minimum performance standard						
Minimum mark 5 at course evaluation.						

Minimum mark 5 at practical activities.

Date Course convenor's signature

10.01.2024 Lect. Dr. Andrei Dornik

Date of approval in the department Head of department's signature

Adresă de e-mail: secretariat@e-uvt.ro
Website: www.uvt.ro