COURSE OUTLINE

1. Study programme mormation	
1.1 Higher education institution	Universitatea de Vest din Timișoara
1.2 Faculty / Department	Chimie, Biologie și Geografie / Departamentul de Geografie
1.3 Sub-department	Geografie
1.4 Field of study	Geography
1.5 Level of study	Master's degree
1.6 Study programme / Qualification	Geographic Information Systems

Study programme information 1

2. Course information

2.1 Course title			Advanced processing of remote sensing data					
2.2 Course conveno	r/ Lec	turer	Conf. univ. dr. Marcel Török-Oance					
2.3 Teaching assista	nt		Conf. univ. dr. Marcel Török-Oance					
2.4 Year of study	II	2.5 Semester		Ι	2.6 Type of assessment	Е	2.7 Course type	DI

3. Total estimated time (hours of didactic activities per semester)

3.1 Number of hours per week	4	of which: 3.2 lecture	2	3.3 seminar/laboratory	2
3.4 Total hours in the curriculum	56	of which: 3.5 lecture	28	3.6 seminar/laboratory	28
Time distribution:	Time distribution:				
Studying textbooks, course materials, bibliography and notes					20
Further research in libraries, on electronic platforms and in the field					25
Preparing seminars/ laboratories, homework, research papers, portfolios and essays					25
Tutoring					14
Examinations					10
Other activities					
3.7 Total hours of individual study	94				
3.8 Total hours per semester	150				
3.9 Number of credits	6				

4. Prerequisites (if applicable)

4.1 based on	Remote Sensing
curriculum	
4.2 based on	Basic knowledges of Remote Sensing
competencies	

5. Conditions (if applicable)

5.1 for the course	Computer / laptop with audio-video system for the teacher, computers / laptops / tablets with audio-video system for each student, internet access, access to the Elearning UVT platform: Google Meets app.	
5.2 for the seminar/laboratory	 complete fulfilment of tasks of laboratory work and projects Computer / laptop with audio-video system for the teacher; computers / laptops / tablets with audio- 	

video system for each student, internet access, access
to the Elearning UVT platform; Google Meets
application, eCognition, IDRISI and ENVI softwares.
·

6. Objectives of the discipline - expected learning outcomes to the formation of which contribute to the completion and promotion of the discipline

	•Knowledge of concepts in Object-based Image Analysis (OBIA)
	• Understanding the advantages / disadvantages of satellite image analysis at pixel level respectively by OBIA
Knowledges	•Knowledge of various image segmentation algorithms
	•Knowledge of rule-set based and region of interest classification methods
	•Knowledge of manual and (semi)automated objects delineation methods
	•Knowledge of the accuracy assessment methods in OBIA
	 Hands-on skills in Definies Developer eCognition software
Skile	• Developing an objective and analytical spirit in students; appreciating the advantages of each
SKIIS	type of product or technique and understanding their complementarity;
	• Developing the ability of scientific analysis and communication in an academic environment
	• Applying efficient and responsible work strategies, based on the principles, norms and values
	of ethics in academic conduct;
Responsibility	• Self-assessment of the need for continuous professional training in order to insert and adapt
and autonomy	to the requirements of the labour market.
	• Applying efficient work techniques in a multidisciplinary team, ethical attitude towards the
	group, respect for diversity and multiculturalism; acceptance of diversity of opinion

7. Content

7.1 Lecture	Teaching methods	Observations
1. Human image perception and the	Interactive presentations,	2 hours
classification of remote sensing data	heuristic conversation,	
2. Changing the paradigm: moving from	problematization and	2 hours
pixel-based analysis to object-based	hands-on examples	
analysis		
3. Hierarchical theory and its application		2 hours
in OBIA		
4. Generating objects by segmentation		4 hours
5. Segmentation techniques: based on		4 hours
pixel or histogram, based on region and		
limits identification		
6. Classification algorithms and modelling		2 hours
of classes		
7. Pixel-based classification techniques		2 hours
8. OBIA classification techniques		4 hours
9. Hierarchical classification of objects		2 hours
10. Using ancillary data in OBIA		2 hours
11 A		2 h
11. Accuracy assessments of the		2 nours
classification results in OBIA		
Bibliography		A
I. Baatz, M. Schäpe, M., (2000), M	ultiresolution segmentation –	– An optimization approach for high

quality multi-scale image segmentation

2. Blaschke, T (2010), Object based image analysis for remote sensing, ISPRS Journal of Photogrammetry

and Remote Sensing,

- 3. Blaschke, T., Lang, S., Hay, G.J., (2008) Object-based image analysis, Spatial Concepts for knowledgedriven remote sensing applications, Lecture Notes in Geoinformation and Cartography;
- 4. Blaschke, T., Strobl, J., (2001), What's wrong with pixels? Some recent developments interfacing remote sensing and GIS, Interfacing Remote Sensing and GIS;
- 5. Neubert, M., Herold, H., Meinel, G., (2006) Evaluation of remote sensing image segmentation quality further results and concepts, Proceedings of the 1st international Conference on Object-based Image Analysis, Salzburg, July 4-6;

6. Su Ye, Robert Gilmore Pontius, Rahul Rakshit, (2018), A review of accuracy assessment for object-based image analysis: From per-pixel to per-polygon approaches, ISPRS Journal of Photogrammetry and Remote Sensing, Volume 141, <u>https://doi.org/10.1016/j.isprsjprs.2018.04.002</u>.
7. Course presentations

References and course presentations are posted on Elearning UVT Platform (https://elearning.e-uvt.ro/)

7.2 Seminar / laboratory	Teaching methods	Observations
1. Introduction in eCognition software.	Hands-on exercises, case	2 hours
	studies, scientific	
2. Segmentation parameters in	explanation and	2 hours
eCognition. Choosing the right	demonstration.	
segmentation scale using the Estimated		
Scale Parameter tool (ESP2).		
3. Image segmentation using		4 hours
segmentation algorithms implemented in		
eCogniton software.		
4. Analysis of object properties: geometric		2 hours
properties (size, shape), texture,		
hierarchical properties.		
5. Automatic classification of images		2 hours
based on samples		
6. Rule-set based automatic classification		4 hours
of the satellite images.		
7. Thematic classification based on multi-		2 hours
scale segmentation		
8. Change – detection in OBIA		2 hours
9. Visual and automatic delineation of		2 hours
objects using ArcGIS and Definiens.		
10. Other software that can be used to		2 hours
image segmentation and classification:		
ENVI and IDRISI		
11. Individual project / project assistance	Individual work, practical	The practical assignments are made
	application, project	individually by formulating problems
	presentation	that students will find solutions
	P	through OBIA
	1	

Bibliography

Drăguţ, L., Csillik, O.,Eisank, C., Tiede, D., Automated parameterisation for multi-scale image segmentation on multiple layers,ISPRS Journal of Photogrammetry and Remote Sensing,Volume 88, https://doi.org/10.1016/j.isprsjprs.2013.11.018.

*** 2008, Definiens Developer Essential Training – Complete basic workflow, Definiens AG, Munchen.

*** 2018 Trimble eCognition Developer. Reference Book, Trimble Germany GmbH, 438 pp

The bibliography for the student's projects will be chosen individually, depending on their specific.

8. Corroborating course content with the expectations held by the representatives of the epistemic community, professional associations and typical employers in the field of the study programme

The content of the course was developed in accordance with the curriculum and meets the didactic and scientific requirements corresponding to similar specializations from other European universities. Course content will offer the students the necessary skills to start-up research projects leading to MSc Theses and to enroll in a PhD program. It stimulates the personal involvement of students in identifying problems that are suitable for image analysis in an OBIA environment. It facilitates the initiation by students of contacts and possible collaborations with companies and institutions in the field of GIS and remote sensing. The software used in practical applications is one of the most modern and frequently used in object – based image analysis.

9. Assessment

Type of activity	10.1 Assessment criteria	10.2 Assessment	10.3 Weight in the		
		methods	final		
			mark		
10.4 Lecture	Understanding and assimilation of	Continuous evaluation	15%		
	knowledge				
	Course activity	Continuous evaluation	15%		
10.5 Seminar /	Quality of the project and	Project presentation	70%		
laboratory	presentation.				
10.6 Minimum performance standard					
1 (1	1 1				

- Minimum mark 5 at course evaluation.
- Minimum mark 5 at practical activities.

Date 10.09.2023

Course convenor's signature

Date of approval in the department

Head of department's signature