

COURSE OUTLINE

1. Study programme information

1.1 Higher education institution	Universitatea de Vest din Timișoara
1.2 Faculty / Department	Chimie, Biologie, Geografie / Departamentul de Geografie
1.3 Sub-department	Geografie
1.4 Field of study	Geography
1.5 Level of study	Master's degree
1.6 Study programme / Qualification	Geographic Information Systems

2. Course information

2.1 Course title			In	trodu	ction to programming			
2.2 Course conven	or/ Lec	turer	Le	ect. Dr	: Dornik Andrei			
2.3 Teaching assist	ant		Le	ect. Dr	: Dornik Andrei			
2.4 Year of study	1	2.5 Semester		1	2.6 Type of assessment	Е	2.7 Course type	DS/
								DO

3. Total estimated time (hours of didactic activities per semester)

			,		
3.1 Number of hours per week	3	of which: 3.2 lecture	1	3.3 seminar/laboratory	2
3.4 Total hours in the curriculum	42	of which: 3.5 lecture	14	3.6 seminar/laboratory	28
Time distribution:					hours
Studying textbooks, course materials, bibliography and notes					35
Further research in libraries, on electronic platforms and in the field					35
Preparing seminars/ laboratories, homework, research papers, portfolios and essays					20
Tutoring					9
Examinations					9
Other activities					

3.7 Total hours of individual study	108
3.8 Total hours per semester	150
3.9 Number of credits	6

4. Prerequisites (if applicable)

	4.1 based on curriculum	Basics in informatics; Geographic Information Systems; Geoinformatics
	4.2 based on competencies	Basic skills of computer use; analytical spirit and the ability to break down
problems into sub-problems		problems into sub-problems

5. Conditions (if applicable)

5.1 for the course	•	Computer / laptop with audio-video system for the teacher and students			
	•	internet access; access to the Elearning UVT platform;			
	•	leo projector			
5.2 for the seminar/laboratory	•	complete fulfilment of tasks of laboratory work and projects			
	•	Computer / laptop with audio-video system for the teacher and students;			
	•	internet access; access to the Elearning UVT platform;			
	•	video projector			

Website: www.uvt.ro

6. Objectives of the discipline - expected learning outcomes to the formation of which contribute to the completion and promotion of the discipline

the completion and promotion of the discipline						
	Basic knowledge of computer science and mathematics					
	Concepts related to the structure and operation of a computing system					
Knowledges	• Concepts and methodologies regarding the analysis, design and implementation of					
	computer applications					
	Understanding the operation of an algorithm					
	Create algorithms in pseudocode					
	Analysis of the complexity and correctness of a code					
	Implementation and testing of a program					
	• The ability to identify algorithms and data structures appropriate to a particular problem, to					
Skills	apply the principles of computer application development, and to implement algorithms in a					
SKIIIS	programming language					
	• The ability to use programming environments/tools/platforms specific to each stage in the					
	development of program					
	• The ability to use file systems, to manage processes specific to a computing system, to					
	ensure effective communication between software components					
	• Development of a critical and analytical spirit among students; appreciating the advantages					
	of using algorithmic thinking					
	The ability to solve specific tasks autonomously					
	• The ability to identify/select appropriate solutions and generate innovative ideas					
	• The ability to correctly/effectively identify and plan tasks specific to a particular project					
Responsibility	• The application of effective and responsible work strategies, based on the principles, norms					
and autonomy	and values of the code of professional ethics					
	• Application of effective work techniques in a multidisciplinary team, ethical attitude,					
	respect for diversity and multiculturalism, acceptance of diversity of opinion					
	• Self-assessment of the need for continuous professional training for the purpose of insertion					
	and adaptability to the requirements of the labor market					
	Capitalizing on the results obtained to analyses, studies and geographical projects					

7. Content

7. Content		
7.1 Lecture	Teaching methods	Observations
1. Introduction to algorithms. The notion of algorithm. The objectives of	Lecture, Interactive	2 hours
programming. Properties of algorithms. Data and data classifications.	presentations,	
Simple processing. Structured processing (sequential, decision, cycle).	heuristic	
2. Description of algorithms and variables. Pseudocode. Description of	conversation,	2 hours
fundamental processing and structured data. Examples of simple	problematization and	
algorithms (calculations of sums and finite products, approximation of	hands-on examples	
infinite sums, operations on whole numbers, operations on tables).		
Successive refinement technique and decomposition of an algorithm into		
subalgorithms.		
3. Lists and dictionaries. Definition and access to elements. Simple		3 hours
operations on lists. Lists. Elementary sorting methods. The problem and		
method of inserting, selecting and exchanging neighboring elements (for		
each method: variants of the algorithm, correctness verification,		
complexity analysis).		
4. Functions. Local variables. Parameter specification. Calling functions.		2 hours
Returning the results.		
5. Working with files. Exception handling.		1 hours
6. Implementation of recursive functions. Implementation of recursive		2 hours

Website: www.uvt.ro

algorithms (generation of permutations, generation of subsets).	
7. Algorithm debugging. The stages of verifying the correctness of the	2 hours
algorithms. Elements of formal analysis of correctness: preconditions,	
postconditions, invariants, termination functions. Analysis of the	
complexity of algorithms. Purpose of the analysis. Analyzed resources.	
Estimation of execution time (best case, worst case, average case).	
Examples: finite sums, product of two matrices, minimum	
determination, sequential search.	

Bibliography

- Elkner J., Downey A.B., Meyers C., How to think like a computer scientist. Learning with Python, Green Tea Press, 2002
- Lutz, M., Learning Python, 3rd edition, O. Reilly, 2007
- Swaroop C. H., Zimmerhoff J., A Byte of Python, 2017, ISBN 1977878490
- Tanimoto S., Introduction to Python for Artificial Intelligence, IEEE Computer Society
- Additional references and course presentations are posted on Elearning UVT Platform (https://elearning.e-uvt.ro/)

<u>uvt.ro/</u>)		T
7.2 Seminar / laboratory	Teaching methods	Observations
1. Introduction to Python. Installation. Familiarization with the interface.	Hands-on exercises,	2 hours
The read-evaluate-print cycle. Evaluation of expressions. Simple	case studies,	
mathematical operations.	scientific	
2. Specifying variables (numeric, logical, character strings). Rules for	explanation and	2 hours
constructing expressions. Explicit display of results. Specifying	demonstration.	
conditional and repetitive processing.		
3. Lists and dictionaries. Definition and access to elements. Simple		2 hours
operations on lists.		
4. Definition of functions. Local variables. Parameter specification.		2 hours
Calling functions. Returning the results.		
5. Working with files. Exception handling.		2 hours
6. Processing of lists. Implementation of search and sorting algorithms		2 hours
7. Implementation of recursive functions. Implementation of recursive		2 hours
algorithms (generation of permutations, generation of subsets).		
8. Implementation of algorithms based on the division technique (binary		2 hours
search, simple algorithms from computational geometry)		
9. Implementation of quick sorting and sorting by interclassing		2 hours
10. Other data types (tuples). The difference between modifiable and		2 hours
non-modifiable types. Implementation of heuristic algorithms.		
11. Peculiarities of working with multidimensional lists. Implementation		2 hours
of optimization algorithms based on dynamic programming.		
12. Modules and packages. Creation and use. Import and reload		2 hours
functions. Namespaces.		
13. Implementation of some algorithms based on the return search		2 hours
technique. Implementation of some algorithms based on the branch and		
bound technique.		
14. Evaluation, Feedback		2 hours
1		

Bibliography

- Downey A.B., How to think like a computer scientist. Learning with Python, Green Tea Press, 2002
- Lutz, M., Learning Python, 3rd edition, O. Reilly, 2007
- Swaroop C. H., Zimmerhoff J., A Byte of Python, 2017, ISBN 1977878490
- Tanimoto S., Introduction to Python for Artificial Intelligence, IEEE Computer Society
- Additional references and course presentations are posted on Elearning UVT Platform (https://elearning.e-uvt.ro/)

Website: www.uvt.ro

8. Corroborating course content with the expectations held by the representatives of the epistemic community, professional associations and typical employers in the field of the study programme

The content of the discipline was developed in accordance with the curriculum and meets the didactic and scientific requirements corresponding to similar specializations in other university centers. Introduction to programming facilitates the acquisition of basic knowledge in carrying out a research project, both from a theoretical point of view and from the point of view of working methods in the field, developing students' analytical thinking, the ability to problematize, to manage a scientific approach, of a database and its operation. The software used in the practical applications are among the most modern and frequently used in specialized institutions. Such applied training makes students compatible with the job market in the field of geographic information systems, or research activity.

9. Assessment

Type of activity	9.1 Assessment criteria	9.2 Assessment methods	9.3 Weight in the final mark			
9.4 Lecture	Understanding and assimilation of theoretical knowledge	Test	20%			
9.5 Seminar / laboratory	Develop a program in Python	Continuous formative evaluation – presentation and feedback during the semester	20%			
		Presentation of the final Python program/code	40%			
	Test programming skills	Practical test	20%			
9.6 Minimum performance standard						

Minimum mark 5 at course evaluation.

Minimum mark 5 at practical activities.

Date Course convenor's signature

11.09.2023 Lect. Dr. Andrei Dornik

Date of approval in the department Head of department's signature

Adresă de e-mail: secretariat@e-uvt.ro
Website: www.uvt.ro