COURSE OUTLINE

1. **Study programme information**

1.1 Higher education institution	Universitatea de Vest Timisoara
1.2 Faculty / Department	Chemistry-Biology-Geography/ Department of Geography
1.3 Sub-department	Geography
1.4 Field of study	Geography
1.5 Level of study	Masters
1.6 Study programme / Qualification	Geographical Information Systems (GIS)

2. **Course information**

2.1 Course title			Location based services and their applicability					
2.2 Course convend	or/Lec	turer	Dr. Octavian Iercan					
2.3 Teaching assist	ant		Dr. Octavian Iercan					
2.4 Year of study	II	2.5 Semester	12.6 Type ofC2.7 Course typeC				Op	
					assessment			

3. Total estimated time (hours of didactic activities per semester)

3.1 Number of hours per week	4	of which: 3.2 lecture	2	3.3 seminar/laboratory	2	
3.4 Total hours in the curriculum	56	of which: 3.5 lecture	28	3.6 seminar/laboratory	28	
Time distribution:						
Studying textbooks, course materials, bibliography and notes						
Further research in libraries, on electronic platforms and in the field						
Preparing seminars/ laboratories, homework, research papers, portfolios and essays					20	
Tutoring						
Examinations						
Other activities						
3.7 Total hours of individual study 94						
3.8 Total hours per semester 150						
3.9 Number of credits 6						

4. **Prerequisites (if applicable)**

4 1 1 1	
4.1 based on	• GIS, Remote Sensing
curriculum	
4.2 based on	• Basic programming with python, data processing techniques, relational databases,
competencies	basis understanding of programming algorithms

5. **Conditions (if applicable)**

5.1 for the course	•	mandatory attendance for 70% of the courses
	•	50% of the course will be onsite and 50% online
	•	block course over 1 week onsite

5.2 for the seminar/laboratory	• Attendance is mandatory. A maximum of 3 absences		
	tolera	ted	
	• All laboratory tasks need to be completed		
	•	50% of the seminar will be onsite and 50% online	

6. Ac	cumulated specific competencies
Peofes sional compet encies	 Understanding the importance of Location Based Services (LBS); Grasping the methodologies involved for using LBS; Understanding the specifics of POI collection needed in LBS; Knowing the methodologies for obtaining a location using diverse hardware components; Knowing me algorithms used and analytical methodologies for determining locations in LBS; Critical analysis of determining correct positioning using LBS Parallel analysis between algorithms and sensors using for localization Using hardware such as: smartphone, GPS receiver, PNG, etc. Using ESRI ArcGIS for data transfer and processing including Python processing Using OpenSource GIS such as Quantum GIS and FOOS4G products Using high end GPS receiver for precise location determination and understanding the lelativeness of the mitigated GPS collection techinques Utilizing various connectivity bridges (WLAN, Blootooth, GSM, UMTS) in LBS context Data processing and data integration in GIS projects for navigation and LBS Obtaining Smart Analytics with BigData methodologies for generating results from collected and sourced data in the LBS context
Transv ersal compet encies	 Apply working strategies for efficiency and responsibility based on principles, norms and values according to the ethical code of conduct Apply efficient and collaborative working techniques in a multiskillset and multidisciplinary environment, respect for multiculturalism and diversity as well as acceptance for difference of opinion Self-assessment of the need for professional development aiming to increase the labor market adaptability

7. Course objectives (as resulting from the accumulated specific competencies)

7.1 General objective	Learning the concepts behind location based services and utilization of various methods of connectivity
7.2 Specific objectives	Developing a product oriented team organization and problem solving attitude

8. **Content**

8.1 Lecture	Teaching methods	Observations
	Lecture, heuristic	
1. Introduction to Location Based Services	conversation, problem	
2. GPS, Galileo and satellite navigation	solving.	

3. Determining location with WLAN and	
Bluetooth	
4. Controlled determination of location with	
WLAN	
5. Determining location with WLAN and no	
calibration	
6. Determining location with Time-of-arrival	
method for WLAN	
7. Determining location using GSM and UMTS	
networks	
8. Security and privacy in LBS context	
9. Multisensor determination of location for	
results correction and improvement	
10. Algorithms for trajectory prediction	
11. LBS and data processing	
12. Smart analytics and data extraction	

Bibliography

Schiller, Jochen, and Agnès Voisard, eds. Location-based services. Elsevier, 2004.

Assessing the business impact of location based services, 2004. Proceedings of the 37th Hawaii International Conference on System Sciences.

L. S. A.-M. Nivala, An approach to intelligent maps: Context awareness, The 2nd Workshop on 'HCl in Mobile Guides', (2003).

R. S. Ajay Magon, Lbs, the ingredients and the alternatives. http://www.gisdevelopment.net/technology/lbs/techlbs006pf.htm.

M. G. B. Schilit, J. Hong, Wireless location privacy protection, IEEE JNL, Volume 36 (2003), pp. 135–137.

A. Brimicombe, Gis - where are the frontiers now?, Proceedings GIS 2002, (2002), pp. 33-45.

F. P. Carmine Ciavarella, The design of a handheld, loaction-aware guide for indoor environments, Springer-Verlag London, (2004).

G. George Liu, Jr. Maguire, A class of mobile motion prediction algorithms for wireless mobile computing and communications, Mobile Networks and Applications, (1996), pp. 113–121.

T. Helmreich, Hier geht's lang mit den location based services, 2002. http://www.contentmanager.de/magazin/news_h3153-print_hier_gehts_ lang_mit_den_location-based.html.

8.2 Seminar / laboratory	Teaching methods	Observations
1. Display data used in LBS project using webbased	Scientific explanation, case	
applications such as Google Maps/Open Streetmap and local	studies, demonstration,	
instalations such as ESRI ArcGIS or Google Earth	problem solving applications	
2. Basic data processing and project preparation		
3. Learning LBS importance and utilization using		
preinstalled application on mobile devices		
4. Field work: test various hardware with LBS		
applicability and multi sensor technologies		
5. Use of GIS data in corroboration with mobile device		
data collected in the field for better understanding of LBS.		
6. Contribute to a data gathering exercise for future		
generations and so creating a databased for LBS of Timisoara		
and the region.		
7. Extract smart analytics with python and other		
programming tools using BigData methodologies		
8. Team Project	Team work, results	
	marketing and presentation,	
	application development	

9. Corroborating course content with the expectations held by the representatives of the epistemic community, professional associations and typical employers in the field of the study programme

Course content is conforming to the standard and state of the art research in the field as well with the technological state of the art for LBS in the industry. The course stimulates the students to work as a team to a common goal to find and solve spatial and temporal problems a LBS user experiences in real life. Utilization of GIS and relational databases knowledge as well as better understanding of data manipulation using software scripting languages allows the student to interact in the future with the GIS industry as well as with the data analytics organizations. The Software used in the course is high-end GIS software used by the majority of the businesses and institutions dealing with GIS.

10. Assessment

Type of activity	10.1 Assessment criteria	10.2 Assessment	10.3 Weight in the		
		methods	final		
			mark		
10.4 Lecture	Understanding and assimilation of LBS	Written or oral exam	50%		
	knowledge				
10.5 Seminar /	Presentation and project report content	Presentation of results	50%		
laboratory	quality				
10.6 Minimum performance standard					
Minimum 5 for both Lecture and Seminar results.					

Date 15 09 2022

Course convenor's signature

Teaching assistant's signature

Date of approval in the department

Head of department's signature