COURSE OUTLINE

1.	Study	programme	information
. .	Diady	prosi amme	mormation

1.1 Higher education institution	Universitatea de Vest din Timișoara
1.2 Faculty / Department	Chimie-Biologie-Geografie/Geografie
1.3 Sub-department	
1.4 Field of study	Geography
1.5 Level of study	Master's degree
1.6 Study programme / Qualification	Geographic Information Systems

2. Course information

2.1 Course title				Geomorphometry					
2.2 Course convenor/ Lecturer			Pı	Prof. Dr. Lucian DRĂGUŢ					
2.3 Teaching assistant			Pı	rof. Dr	: Lucian DRĂGUŢ				
2.4 Year of studyII2.5 Semester				Ι	2.6 Type of assessment	E	2.7 Course type	DI	

3. Total estimated time (hours of didactic activities per semester)

3.1 Number of hours per week	4	of which: 3.2 lecture	2	3.3 seminar/laboratory	2	
3.4 Total hours in the curriculum	56	of which: 3.5 lecture	28	3.6 seminar/laboratory	28	
Time distribution:						
Studying textbooks, course materials, b	ibliogra	aphy and notes			20	
Further research in libraries, on electronic platforms and in the field					20	
Preparing seminars/ laboratories, homework, research papers, portfolios and essays					30	
Tutoring						
Examinations						
Other activities						
3.7 Total hours of individual study 94						

3.8 Total hours per semester	150
3.9 Number of credits	6

4. Prerequisites (if applicable)

4.1 based on	•
curriculum	
4.2 based on	•
competencies	

5. Conditions (if applicable)

5.1 for the course	
5.2 for the seminar/laboratory	

6. Accumulated specific competencies

••	see and specific compressions
Peo fess ion al co mp eten cies	 Knowledge of concepts in geomorphometry Understanding Digital Elevation Models (DEMs) and their processing Understanding the differences between general and specific geomorphometry Knowledge on computing the basic geomorphometric variables Knowledge on analysis and classification of geomorphometric objects Understanding the impact of DEM errors on geomorphometric analysis Understanding the importance of algorithms and differences they can lead to Understanding the role of scale in analysis Operational skills in ArcGIS, SAGA GIS, LandSerf, and eCognition
Transver sal competen cies	 Understanding of ethics in academic conduct (correct citations, avoiding plagiarism, avoiding fabrication) Developing team working abilities.

7. Course objectives (as resulting from the accumulated specific competencies)

7.1 General objective	Students are able to professionally analyze a Digital Elevation Model.
7.2 Specific objectives	

8. Content

8.1 Lecture	Teaching methods	Observations
1. Geomorphometry: general framework	Lectures combined	
2. Mathematical and digital models of the	interactively with hands-on	
land surface	exercises.	
3. DEM production methods and sources		
4. Preparation of DEMs for		
geomorphometric analysis		
5. Error propagation in geomorphometry		
6. Basic land-surface variables		
7. Scale in geomorphometric analysis		
8. Geomorphometric objects and their		
classification		
9. Software packages used in		
geomorphometry		
10. Applications of geomorphometric		
analysis in geography and related fields.		

Bibliography

Hengl, T., Reuter, H.I. (Eds.) (2009), Geomorphometry. Concepts, Software, Applications. Elsevier.

8.2 Seminar / laboratory	Teaching methods	Observations
1. Acquisition of SRTM DEMs and their	Hands-on exercises.	
visual analysis		
2. TIN representation and comparison		
with gridded models		
3. Identification and removal of errors in		

DEMs				
4. Derivation of basic land-surface				
variables using different algorithms and				
quantitative comparison of the results				
5. Statistical analysis of land-surface				
variables				
6. Conducting geomorphometric analysis				
at various scales and comparing the				
results				
7. Derivation of stream network and				
basins				
8. Segmentation and classification of				
DEMs				
9. Team project				
Bibliography				
Literature will be selected individually, according to research interests of the students.				

9. Corroborating course content with the expectations held by the representatives of the epistemic community, professional associations and typical employers in the field of the study programme

Course content will offer the students the necessary skills to start-up research projects leading to MSc Theses. Some projects are expected to end-up in journal publications. Skills acquired here and developed further will enable students starting a PhD program.

10. Assessment

Type of activity	10.1 Assessment criteria	10.2 Assessment	10.3 Weight in
		methods	the final
			mark
10.4 Lecture			0 %
10.5 Seminar /	The degree to which students are able to conduct		100 %
laboratory	geomorphometric analysis.		
10.6 Minimum performance standard			
•			

Date

Course convenor's signature

Teaching assistant's signature

13.09.2022

Date of approval in the department

Head of department's signature